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Increasing heterogeneity memory architecture

Great changes in computer architectures

Increases in parallelism
Increases in main memory size and performance

Non-volatile RAM with large, slow memory

High bandwidth memory fast memory local to the CPUs

Parallelism and new memory technologies require architectural changes
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Tile-based systems

Organization in tiles
Multiple cores
Shared scratchpad memory
Local bus
Cache coherent
Network adapter

System interconnect realized as NoC
Communication traverses multiple hops
Further away = higher latencies
No cache coherency

⇒ Effectively non-coherent NUMA

...
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What is a suitable programming model?

Shared Memory?
Requires implicit synchronization

7 Requires coherency

Message Passing and PGAS?
Requires explicit communication

3 Require no coherency

Message passing is no “silver bullet”
Explicit communication not always suitable

Complicated for complex data structures

High serialization/deserialization costs

...
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Software-based coherency

Operating and runtime systems adapt to NUMA platforms
Page placement and migration strategies

First touch policies

NUMA-awareness in allocators, schedulers, locking algorithms, …

⇒ Cross-domain coherency is not necessary most of the time
Provide software component to implement coherency protocol if needed

No hardware coherency mechanism required

⇒ Make use of techniques invented for Virtual Shared Memory
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Memory page cache
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Coherency protocol
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Synchronization of multiple writers

Multiple writers protocol
Use diff sets to write back

⇒ Provide golden copy per page
⇒ Calculate diff against golden copy
⇒ Apply diff on original copy

Requires properly synchronized data
accesses
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Evaluation Setup

FPGA prototype
4x4 tile design

1 tile used for memory only

3 SPARC Leon 3 cores for applications

⇒ total of 45 application cores

8 MB SRAM per tile

2 GB DRAM shared memory

direct-mapped 130kB L2 cache

...

L1$ L1$ L1$

Bus

SRAM Network

Coherency system
Page cache with 256 entries

Managed with LRU policy
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STREAM Benchmark
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Splash-3 Benchmark – LU Benchmark
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Conclusion

Software-based coherency systems for tile-based MPSoCs

On-demand coherency based on Virtual Shared Memory techniques

Replacement for hardware-based coherency strategies

⇒ Allows for hardware designs without coherency protocols

Are we there yet?
Yes

Software-based cache coherency is feasible

Restrictions: no atomic operations for shared data

… and No
Expensive due to frequent diff and copy operations
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Future Work

Reduce coherency system overheads
Write back changes ahead of time

Application of additional hardware acceleration
Difference set calculation and transfer are ideal for near-memory computation

Hybrid caching approach
Use currently unused L2 cache for unshared data

Use software-based mechanism for shared data

However, reduces benefits from exploiting the page cache
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Thank you for your attention!
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